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Abstract

The goal of this paper is to show a (derived) p-adic Simpson correspondence for (locally)
unipotent coefficients on smooth rigid-analytic varieties. Our results depend on a deformation
to B+

dR/ξ2, and not on a choice of exponential (as required for more general coefficients). Our
methods are inherently higher categorical, hinging on the theory of modules over E∞-algebras.
This paper is a modification of my master thesis at the university of Bonn, defended on March
2023.

Introduction

The starting point of non-abelian p-adic Hodge theory was Deninger-Werner’s paper on parallel
transport of vector bundles on p-adic varieties [10], followed by Falting’s paper [11], on which,
based on a similar result for complex varieties established by Corlette, Donaldson, Hitchin and
Simpson, a corresponence is sketched between

{Higgs Bundles on X }↔ {Generalized representations of π1(X , x)}

over some fixed pointed connected smooth proper curve. A similar correspondence was also
conjectured to hold for general proper, smooth varieties over some p-adic local field, and a proof
is also sketched for “small” objects in a sense made precise in loc. cit. These methods have been
worked out on Raynaud’s language of formal models, and further research has culminated in the
treaty [1] by Abbes, Gross and Tsuji.

Recently, the above correspondence has been studied under the light of perfectoid spaces. In
[14], the correspondence has been proven for smooth and proper rigid spaces over some algebraically
closed non-archimedian field C. Such a decomposition also depends on a choice of deformation
of X to B+

dR/ξ2 and an exponential map. In [26] a similar correspondence is proven for small
coefficients, that does not depend on the choice of such exponential, but only works in good
reduction (conjecturally, it should also work if X has semistable reduction).

Our main goal in this paper, is to prove a more special version of the small Simpson corre-
spondence, which holds even without any reduction hypothesis for arbitrary smooth rigid spaces
over C. Recall that a Higgs bundle (resp. pro-étale vector bundle) is said to be unipotent if it
is a successive extension of the unit (cf. Def. 2.3.1). An object is said to be locally unipotent if
étale-locally on X it is unipotent.

1



Theorem (3.4.1). Let X be a smooth rigid-analytic space defined over a closed and complete p-adic
field C (or mixed characteristic perfectoid with all p-power roots of unity) endowed with a (flat)
deformation to B+

dR/ξ2. Then there is an equivalence of symmetric monoidal abelian categories

Higgs(X )l.uni ∼−→VB(Xqproét)l.uni; .

between pro-étale vector bundles and unipotent Higgs bundles on X . A derived analogue of this
statement also holds, and in particular this equivalence also preserve the cohomology groups of
both sides.

A couple of remarks are in order. Firstly, any rigid-analytic space which is defined over a finite
extension of Qp will automatically deform canonically since K ⊂B+

dR with its direct limit topology.
Using spreading out techniques of Conrad and Gabber (see [13, Thm. 7.4.4] for a proof) one also
shows that proper rigid-analytic spaces over a closed complete field C admit such deformations
(non-canonically).

Secondly, the derived version of such statements is no harder to prove then the non-derived
version, provided one has a workable definition of such objects. The right hand side has a site-
theoretic definition, but for the left hand side we refer the reader to the main text.

Finally, when proving the correspondence it is enough, by descent, to prove it for unipotent
objects and then glue. When X is proper, the unipotent correspondence becomes of a more
homotopical nature (as the categories of Higgs bundles and quasi-pro-étale vector bundles are not
invariant under, say, π1-equivalences). We may then rewrite it in the following form.

Corollary. Let X be a smooth, proper rigid-analytic space defined over a closed and complete p-adic
field C (or mixed characteristic perfectoid with all p-power roots of unity). Fix a geometric point
x̄ → X and consider its étale fundamental group π1(X , x̄), endowed with its profinite topology.
Then there is an equivalence of categories

Higgs(X )uni ∼=RepC(π1(X , x̄))uni

between unipotent continuous representations of π1 on C-vector spaces and unipotent Higgs
bundles on X . This equivalence is canonical once fixed a lift of X to B+

dR/ξ2.

Strategy of proof To prove the unipotent correspondence we reinterpret both sides as modules
over an approriate E∞-algebra, in the sense of [17]. In simple terms, this is an

object in a derived category of a (sheaf of) rings which admits an algebra structure whose addition
and multiplication laws hold only up to a coherent homotopy.

We now introduce the derived variants of the categories in question. The category of vector
bundles on the (quasi-)pro-étale site of X is replaced by the stable infinity category Perf(Xqproét)
of perfect ÔX -modules (in the site-theoretic sense); for Higgs bundles the situation is a bit more
delicate and we refer to section 2.2 for the definition of H iggs(X ).

In [17], one constructs symmetric monoidal stable infinity categories R-Mod of modules any
E∞-algebra R. If R is a ordinary commutative ring, then this yields the usual enhancement of the
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derived category D(R) of R. To prove our main theorem, we establish a diagram

Higgs(X )uni VB(Xqproét)uni

SymΩ̃1[−1]-Mod Rν∗ÔX -Mod;

∼

∼

where the vertical inclusions (Prop. 1.2.5, Prop. 2.3.9 ) are natural inclusions and the lower
horizontal arrow is induced by an isomorphism

Ψ : SymΩ̃1[−1] ∼−→Rν∗ÔX ,

which can be interpreted as a more refined version of the Hodge-Tate decomposition (cf. Sec. 3), and
is equivalent to deforming X to B+

dR/ξ2. The top horizontal arrow will exist and be an equivalence
by purely categorical reasons. The derived statement is proven with the same argument.

The object SymΩ̃1[−1], as the name suggests, is the free E∞-algebra on the object Ω1[−1]. It is
particularly well behaved in our setting because we are working over Qp , which is of characteristic
zero (Cor. 3.1.3). In particular we need not worry about the distinction between the different
versions of Sym.

The object Rν∗ÔX is the derived pushforward of the unit ÔX of D(Xqproét) to D(X ét). The
importance of the projection ν : Xqproét → X ét to p-adic Hodge theory was one of the main points
of [22] who used the Leray spectral sequenece associated to this morphism to deduce the Hodge-Tate
decomposition. The pushforward is an E∞-algebras for essentially formal reasons: Rν∗ is lax
monoidal because it has a symmetric monoidal left adjoint.

We remark that the isomorphism Ψ can be deduced from any form of the Simpson correspon-
dence that preserves the derived structure (or even the Dolbeault and quasi-pro-étale cohomologies
as objects in the derived category of abelian groups) and the symmetric monoidal structure, for
essentially formal reasons.

Also as explained in the introduction we are able to extract the argument to its limits using
descent and also deduce a correspondence for locally derived unipotent objects in each side. These
include all nilpotent Higgs bundles (cf. Section 2.4).

Relation with
other works

We also mention that the above theorem has many intersections with the recent
developements of the subject. In [26] and [5], we have a correspondence for small
objects which is more general and depends also only on a choice of deformation.

However, both papers only deal with good reduction case, so our proof is more general. We also
point out Tsuji’s theorem [1, p. IV.3.4.16] which, as explained in the introduction of the chapter,
works for varieties of semistable reduction. However, in all cases above, our proof is fundamentally
different, and, in the author’s opinion, simpler.
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Notations and
conventions

We fix once and for all a prime p, a non-archemidean (complete) field K of mixed
characteristic and algebraic closure C. We use freely the language of adic spaces,
and accordingly a rigid variety/space over a non archemidean field K is an adic

space X over Spa(K ,K◦) which is locally of topologically finite type.
We use blackbold letters to denote our special rings such as the p-adic integers Zp. As usual,

Cp denotes (a choice of) the complete algebraic closure of Qp.
We also freely use the language of ∞-categories in the sense of quasi-categories of Joyal-Lurie;

in particular all of our derived categories are therefore considered as stable ∞-categories. Hopefully
the non-expert can take this infinite-categorical machinery as a blackbox without much effort.
We highlight that a theory of higher morphisms is necessary in order to have a good theory of
E∞-rings.

The free E∞ algebra on some complex M will be denoted by SymM. The free (ordinary)
commutative algebra on a module M will be denoted CSymM. Since we are in characteristic zero
one could identify SymM[0]= CSymM, but we will keep the notational difference for clarity.

Our gradings follow the following convention. Indices on the bottom follows homological
conventions, and indices on top follow cohomological ones. They are related via Cn = C−n. The
cohomology of a complex is denoted by H n to possibly distinguish it from its sheaf (hyper)coho-
mology.

Given a rigid-analytic variety X over K , we denote by Ω1
X =Ω1

X /K the sheaf of completed
differentials on X (see appendix). We denote the tate twists by Ω̃1

X =Ω1
X (−1) and similarly for

n ∈N we have Ω̃n
X =∧n(Ω̃1

X ) and T̃X =Hom(Ω̃1
X ,OX )= TX (1) etc.
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1 Pro-étale and v-vector bundles

In this section, we review the basic properties of the pro-étale and v-topologies associated to a rigid
analytic variety. We define the main objects we are interested in: quasi-pro-étale vector bundles
(or, equivalently, v-bundles). We then compare this notion to C-local systems and representations
of the fundamental group, and show that they agree on unipotent objects when X is proper.

In the appendix we recall notions of diamonds and perfectoid spaces that will be useful in the
following.

§1.1. Pro-étale and
v vector bundles;
local systems

Any ringed topos comes with a theory of vector bundles and a bounded
perfect derived category (see eg. [Stacks, 08G4]). For the quasi-pro-étale/v-
topology, this yields one of the sides of the p-adic Simpson’s correspondence.
These objects are related to local systems of C-modules, where C is the sheaf

of continuous maps into C as defined in the end of the last section. Furthermore, there is also a
relation with continuous C representation of the étale fundamental group. We start by stating a
result that guarantees we don’t need to care about the difference between the difference between
the v and the qproét sites.
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Theorem 1.1.1. Let X be an analytic adic space over SpaZp , or more generally a diamond. Then
pullback along λ : Xv → Xqproét induces equivalences of categories

VB(Xqproét) ∼−→VB(Xv), Perf(Xqproét) ∼−→ Perf(Xv).

Remark 1.1.2. Even if one only cares about non-derived objects, the derived result is still important,
as it implies that if M ∈Db

perf(Xv), then RΓqproét(X , M) ∼−→ RΓv(X ,λ∗M).

Proof. Both sides are locally perfectoid, so this theorem reduces to a computation on affinoid
perfectoids. For the vector bundle case, this was handled in [25, Lemma 17.1.8]. For perfect objects,
the proof is more difficult, and it was done in [3, Thm. 2.1].

We now explain the relation between these vector bundles, C-local systems and representations
of the fundamental group.

From now on we work over a complete algebraically closed non-archimedean perfectoid field
(C,OC).

Consider a connected rigid-analytic variety X over C and fix a geometric point x̄ → X . We
define the category (with the usual morphisms)

RepC(π1(X , x̄))=
{

finite dim. continuous C-linear
representations of π1(X , x̄)

}
.

This symmetric monoidal abelian category can be identified with the category of local systems on
the classifying stack of the fundamental group.

Definition 1.1.3. Let G be a profinite group and X a perfectoid space. A G-torsor on X is a
perfectoid space Y /X with a GX -action which is proét-locally trivial. We let BG denote the
pro-étale stack of G-torsors on Perf.

Lemma 1.1.4. Let X be a (locally spatial) diamond. Then the groupoid of morphisms X → BG is
equivalent to the groupoid of G-torsors on X , that is, the groupoid of (locally spatial) diamonds
Y /X with a GX action which is quasi-pro-étale-locally trivial.

Proof. Write X as a quotient by a perfectoid equivalence relation X P /R. A map into BG is the
same as a map from the perfectoid X P → BG which respects the relation. This is then equivalent
to constructing a G-torsor Y /X . Conversely, any such torsor defines a torsor on X P respecting R,
hence defines a map into BG. If X is (locally) spatial then so is any G-torsor over X , since Y → X
is a quasi-pro-étale cover.

Now we can define a quasi-pro-étale site of BG. We say that a morphism of pro-étale stacks
X → BG is quasi-pro-étale if it is locally separated and the pullback to S → BG is pro-étale for
all strictly totally disconnected S. The quasi-pro-étale site BGqproét is the site of those stacks
quasi-pro-étale over BG with v-covers.

As usual, there is a map pt→ BG which corresponds on S points to the trivial torsor (Here
pt=Spa(C,OC) is the final object). Given a diamond X and a morphism X → BG classifying a

6



torsor P the diagram

P pt

X BG

is cartesian. Hence pt→ BG is quasi-pro-étale in the sense above and also surjective since P → X
is always surjective [24, Lemma. 10.13].

Proposition 1.1.5. Let G be a profinite group. Then there is a canonical equivalence of symmetric
monoidal categories

LocSys(BGqproét,C) ∼−→RepC(G), Perf(BGqproét,C) ∼−→ Perf(G)

given by the pullback to pt→G.

Proof. Sheaves on any site descend along slice topoi. We conclude that sheaves on BGqproét are
the same as G-equivariant sheaves on (BGqproét)/pt, that is, condensed sets with a continuous
G-action. The result follows formally.

Remark 1.1.6. Seeing G as a group object in the topos of condensed sets (ignoring cardinal issues)
then BGqproét is identified with the classifying topos of G [SGAIV-IV.2.4] by the proposition
above.

Remark 1.1.7. Again, the derived result is important even if one only cares about objects con-
centrated in degree zero. It implies the cohomological comparison for finite dimensional C-
representations

RΓcont(G, M)∼=RΓ(BG, M)

where the left hand side is defined as the continuous cohomology of M as computed inside the
world of condensed sets (which agrees with the classical formula).

Another related object are C-local systems. A C-local system then is a C-module which is
quasi-pro-étale locally free of finite rank. Here C is the quasi-pro-étale sheaf defined before the
statement of the primitive comparison theorem (Theorem B.0.13). We claim there are functors

RepC(π1(X , x̄))→ LocSys(C)→VB(Xqproét),

relating these objects. To understand these we introduce the pro-étale version of the universal
covering space in topology.

Definition 1.1.8 (The universal pro-finite-étale cover). Let X be a connected rigid-analytic variety
over C, and let x̄ → X be a geometric point. We define the universal pro-finite-étale cover of X to
be the limit

X̃ = lim
X ′→X

X ′, X ′(C) 3 x̄′ 7→ x̄,

of all connected, pointed, finite étale covers (X ′, x̄′) over (X , x̄). This limit is taken inside the
category of sheaves on Perf , and is a locally spatial diamond.
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Almost by definition, the map X̃ → X is a quasi-pro-étale (more precisely pro-finite-étale) cover
of X . It is a torsor under π1(X , x̄), every étale cover of X̃ splits, and any pointed pro-finite-étale
cover (X ′, x̄′) → (X , x̄) receives a unique basepoint preserving map X̃ → X ′ (which is automatic
pro-finite-étale). Before defining the aforementioned functors, we state some important properties
of this covering space.

Proposition 1.1.9. Let X be a connected, qcqs, pointed, rigid-analytic variety over SpaC. Then X̃
satisfies the conditions

H0(X̃ ,C)= C, H1(X̃ ,C)= 0.

If X is also proper, then H0(X̃ ,OX )= C.

Proof. This is essentially [15, Prop. 4.9], with some minor adjustements. We note that we have
H0(X̃ ,OC/$n)=OC/$n which follows from [24, Prop. 14.9], and implies H0(X̃ ,C)∼= C. When X
is proper, we also get the result on ÔX cohomology via the primitive comparison theorem with
the same argument as [15].

For the result on H1, we first note that

H1(X̃ ,OC/$n)= 0,

since any torsor under this sheaf will be trivialized on the inverse limit. This implies that
H1(X̃ ,C) = 0 via an R lim argument. Namely, we have that OC = R limn OC/$n by the fact that
Xqproét is replete, so there is a short exact sequence

0→R1 lim
n

H0(X̃ ,OC/$n)→H1(X̃ ,OC)→ lim
n

H1(X̃ ,OC/$n)→ 0

where the first term vanishes since the projective system in question has surjective transition maps,
and the last term vanishes by the argument above. The claim now follows by inverting p.

Now we can use X̃ to build local systems just as we do in topology. The universal cover
X̃ → X is classified by a map l : X → Bπ1 = Bπ1(X , x̄), and since a finite-dimensional continuous
C-representation of π1(X , x̄) can be seen as a C local system on Bπ1, we obtain the first functor
via pullback.

Proposition 1.1.10. Let X be a rigid-analytic variety over SpaC, pointed and connected. The
pullback map via l : X → Bπ defined above determines an exact, symmetric monoidal, fully-faithful
functor

l∗ : RepC(π1(X , x̄)) ,→ LocSysC(X ),

whose image consists on all local systems trivialized on a pro-finite-étale cover of X . Furthermore
for a representation V we have

H0
cont(π1,V ) ∼−→H0

qproét(X , l∗V ), H1
cont(π1,V ) ∼−→H1

qproét(X , l∗V ).
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Proof. It is clear from the universal property of X̃ that a local system is trivialized on a pro-finite-
étale cover of X if and only if it is trivial on X̃ . Therefore we pass to the subcategory

ILocSysC(X )⊂ LocSysC(X )

of such pro-finite-étale local systems and we show that pullback induces an equivalence. Note that
the following diagram

X̃ SpaC

X Bπ1

is cartesian, which implies that the essential image of the pullback does indeed lie in ILocSysC(X )
since all local systems on SpaC are trivial.

Now the inverse of the pullback is given by the functor

L 7→Γ(L, X̃ )

which is a finite-dimensional C vector space (by proposition 1.1.9) with a continuous π1(X , x̄)-
action induced from the action on X̃ .

The results about cohomology follow straight from the Čech-to-sheaf cohmology spectral
sequence and the computation H1(X̃ ,C)= 0 on proposition 1.1.9 (since the Čech cohomology of
X̃ /X computes the continuous cohomology of those local systems which become trivial on it).

Remark 1.1.11. One can show that ILocSysC(X ) are the same as local systems L which admit a
OC-lattice, that is, a sub-OC-module L ⊂ L such that L is a OC-local system and L =L [1/p].

There is also a map LocSysC(X )→VB(Xqproét) which is much simpler to describe. It is simply
given by base change:

L 7→ L⊗C ÔX ∈VB(Xqproét).

This map is not as well behaved as the first one. There is no hope of this functor being fully-faithful
unless X is proper since

C ∼=Hom(C,C)→Hom(ÔX , ÔX )∼=Γ(X , ÔX )

is not necessarily an isomorphism. However, even if X is proper we can only guarantee that

Hom(L1,L2) ∼−→Hom(L1 ⊗ ÔX ,L2 ⊗ ÔX )

is an isomorphism when L1 and L2 are trivialized by some quasi-pro-étale cover Y → X with
H0(Y , ÔX )= C. Taking into consideration 1.1.9 we obtain a fully faithful functor ILocSysC(X ) ,→
VB(Xqproét). The image of such functor is clear: it consists on those vector bundles which are
trivial over a pro-finite-étale cover of X . Let VB(X )profét denote the category of such bundles 1.

1Not to be confused with VB(Xprofét), which are vector bundles in the pro-finite-étale topology. These are
identified canonically with RepC(π1(X , x̄)), and therefore only agrees with VB(X )profét when X is proper by this
theorem.
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Theorem 1.1.12 ([15, Thm. 5.2]). Let X be a proper, rigid analytic space over C, with a fixed
geometric point x̄ ,→ X . The functors defined above define exact, symmetric monoidal equivalences

RepC(π1(X , x̄)) ∼−→ ILocSysC(X ) ∼−→VB(X )profét.

Proof. Follows from the above discussion.

Remark 1.1.13. The equivalence ILocSysC(X ) ∼−→VB(X )profét, in contrast with the first one, pre-
serves all cohomology groups, and hence can be enriched to an equivalence

Perf(X ,C)profét
∼−→ Perf(X , ÔX )profét,

where the subscript profét means we are considering objects trivialized over a pro-finite-étale
cover (equivalently X̃ ). This follows from the full primitive comparison theorem, which is
analogous to Theorem B.0.13, but works for arbitrary local systems. As we will focus on unipotent
local systems later on, we will simply deduce the cohomological comparison from the case of the
unit, to emphasize this unipotent technique.

Remark 1.1.14. The above theorem is a non-archimedian analogue of a well known phenomenon.
For complex manifolds, the analogous functors (where C is denotes the complex numbers)

RepC(π1(X , x)) ∼−→ LocSysC(X ) ∼−→VB∇(Xan)

identify all local systems as coming from a representation (a very weak version of Riemann-Hilbert).
Furthermore, the category of quasi-pro-étale bundles becomes the category of analytic bundles
endowed with a flat connection.

In our case, we observe that even if one wanted to define a flat connection on a quasi-pro-étale
vector bundle, this could not be the naive definition, as we know that this topology is locally
perfectoid, and those spaces have, in some sense, no differentials.

In terms of the proof given above, this difference is related to the fact that the (topological)
universal cover of X is almost never compact (so it has too many global sections).

§1.2. Unipotent
bundles and
Rν∗ÔX -modules.

We are interested in unipotent objects in these categories. If C is a symmet-
ric monoidal abelian category, we denote by Cuni the full subcategory of C
generated by unipotent objects, that is, successive extensions of the unit.

There is also a derived version of unipotence. Let D be a symmetric monoidal stable infinity
category. We denote by Duni ⊂D the smallest stable subcategory of D that contains the unit. An
object of Duni is called derived unipotent.

In general, even if C⊂D is the heart of some t-structure, we cannot guarantee that the notions
of derived unipotence and unipotence agree. For example, if C is the category of finitely generated
R modules, for R a PID, and D = Perf(R), the only unipotent R-modules are the trivial ones
(R is projective) but all finite modules are derived unipotent since they can be written as a cone
M ∼=Cof(Rm → Rn). However, the converse always holds, as we show here below.

For concreteness, we also note we have derived variants of all objects we are considering.
Instead of RepX (π1), LocSysC(X ) and VB(Xqproét) we can consider

Perf(Bπ1,C), Perf(X ,C), Perf(X , ÔX )
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respectively (all underlying topologies are taken to be quasi-pro-étale).

Lemma 1.2.1. Let X be a rigid-analytic variety over C. Let C be either RepC(π1(X , x̄)), LocSysC(X )
or VB(Xqproét), and let D be its derived variant. Then

Cuni ⊂Duni∩C,

that is, every unipotent object is derived unipotent.

Proof. To see that every unipotent object is derived unipotent, we just note that if 0→ E′ → E →
E′′ → 0 is an extension, then E =Fib(E′′ → E[1]) in the derived variant, so E is derived unipotent
by induction on the rank.

Theorem 1.2.2. Let X be a proper and connected rigid-analytic variety over C. The functors above
induce equivalences on unipotent objects

RepC(π1(X , x̄))uni ∼−→ LocSysC(Xqproét)uni ∼−→VB(Xproét)uni.

For derived unipotent objects, we also have Perf(X ,C)uni ∼−→ Perf(X , ÔX )uni.

Proof. We note that all functors are symmetric monoidal, since they are induced by pullback maps
of ringed topoi. We start by proving that the second arrow is fully faithful (classical or derived).
Since all objects are dualizable in these categories, we have that

Hom(X ,Y )=Hom(1, X∨⊗Y ),

so in particular, it is enough to consider maps 1→ L, for a local system L. Therefore we reduce the
above question to an extension of the primitive comparison theorem (Thm. B.0.13)

RΓ(X ,L) ∼−→RΓ(X ,L⊗ ÔX )

to all unipotent coefficients.
For the classical (non-derived) case, this follows by the base case and an induction on the rank.

Namely, we can find an extension 0→ L′ → L → C → 0 which induces a diagram

RΓ(L′) RΓ(L) RΓ(C)

RΓ(L′⊗ ÔX ) RΓ(L⊗ ÔX ) RΓ(ÔX )

∼ ∼

which implies that RΓ(L) ∼−→ RΓ(L⊗ ÔX ) as required. For the derived case, we just consider the
subcategory of all objects L such that the arrow above is an isomorphism. We then note that C is
in such category, and its closed under shifts and fibers (by a variation of the argument above), and
hence it is Perf(X ,C)uni.

For essential surjectivity in the classical case, it is enough to see that if V is a unipotent
representations of the fundamental group, then any extension of V by ÔX , as a quasi-pro-étale
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vector bundle, comes from another representation. This translates to the question of whether the
maps

H1
cont(π1(X , x̄),V ) ∼−→H1(X ,L) ∼−→H1(X ,L⊗ ÔX ),

are isomorphisms, which we know from Proposition 1.1.10 and the discussion above.
The only thing left to argue is that the functor Perf(X ,C)uni ,→ Perf(X , ÔX )uni is essentially

surjective. But that is easy, as it is exact and hence the image is stable and contains ÔX .

Remark 1.2.3. The functor

Perf(π1,C)→ Perf(X ,C)

is not fully faithful, even when restricted to unipotent objects. This makes sense, because we do
not expect in general for étale cohomology to be computed as group cohomology. When this
happens, we could say that X is a K(π,1) for p-adic coefficients.

Corollary 1.2.4. Let X , Y be smooth, proper, connected, pointed rigid-analytic varieties over C
and suppose that a pointed map f : X →Y induces an equivalence

π1(X , x̄) ∼−→π1(Y , f x̄).

Then it also induces via pullback symmetric monoidal equivalencesVB(Yqproét)uni ∼−→VB(Xqproét)uni,
and LocSys(Y )uni ∼−→ LocSysC(X )uni.

We now finish this section by relating unipotent quasi-pro-étale vector bundles on X to
modules over its derived endomorphism algebra. Here we recall the existence of a lax functor

Rν∗ : Perf(Xqproét, ÔX )→D(X ét),

which defines for us a sheaf of E∞-algebras Rν∗ÔX on X ét.

Proposition 1.2.5. Let X be a rigid-analytic variety. The above functor defines a symmetric
monoidal equivalence

Perf(X , ÔX )uni ∼−→Rν∗ÔX -Moduni,

which identifies VB(Xqproét)uni as the smallest subcategory of the right hand side which contains
the unit and is closed under extensions (in the sense of fiber sequences).

Proof. The proof is similar to the theorem above, but now the work lies in showing that the lax
structure maps

Rν∗E ⊗Rν∗ÔX
Rν∗E ′ ∼−→Rν∗(E ⊗E ′)

are equivalences. We hence fix E and consider the full subcategory of all V such that the lax
morphism above is an equivalence. Then this category contains the unit and is stable since it is
closed under shifts and fiber sequences: if V ′ → V → V ′′ is a fiber sequence then

Rν∗V ′⊗Rν∗ÔX
Rν∗E Rν∗V ⊗Rν∗ÔX

Rν∗E Rν∗V ′′⊗Rν∗ÔX
Rν∗E

Rν∗(V ′⊗E ) Rν∗(V ⊗E ) Rν∗(V ′′⊗E )
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commutes and both rows are fiber sequences, hence if two of the vertical arrows are isomorphisms,
so is the third.

Now the proof follows the same arguments as before. Namely we use that every object is
dualizable to reduce fully faithfulness to the claim that

RΓét ◦Rν∗ ∼=RΓ,

where the last global sections are taken in the quasi-pro-étale site, but this is clear. Essential
surjectivity follows by stability of the image.

The second claim now follows suit, since any extension in Perf(X , ÔX ) of objects inVB(Xqproét, ÔX )
will automatically come from a vector bundle (take long exact sequence in cohomology, note that
the extension is concentrated in degree zero and that the category of unipotent vector bundles is
closed under extensions). We also note that this is a monoidal subcategory, since vector bundles
are flat.

2 Higgs bundles

We start by finally defining the other side of the correspondence: Higgs bundles. These objects were
first defined on curves by Hitchin, and generalized to higher dimensional varieties by Simpson.

§2.1. Higgs
bundles

In this section we define Higgs bundles from a “hands-on” perspective, as a rigid
tensor category. We will later see that Higgs bundles also admit a derived version,
as a symmetric monoidal stable infinity-category.

We recall that we denote by Ω̃1 =Ω1(−1) the sheaf of twisted differentials. Similarly Ω̃n =
(Ω̃1)⊗n =Ωn(−n) for n ∈Z. (The inverse is the dual.) Similarly, T̃X = TX (1)= Ω̃−1.

Definition 2.1.1. Let X be a smooth rigid-analytic variety over C, E a vector bundle on X ét, and
Ω̃1 the bundle of twisted differentials. A Higgs field on E is a global section θ ∈Γ(X ,End(E)⊗Ω̃1)
subject to the condition that

θ∧θ = 0 in Ω̃2 ⊗End(E)

A Higgs bundle is a vector bundle E on X ét endowed with a Higgs field θ.
A morphism of Higgs bundle is a morphism of the underlying OX -modules commuting with

the Higgs field. We denote the category of Higgs bundles by Higgs(X ).

Remark 2.1.2. Locally, when E ∼=O n
X , a section θ ∈ Γ(X ,End(E)⊗ Ω̃1) can be seen as a choice of

differential forms ω1, . . . ,ωn ∈Γ(X , (Ω̃1)n), and the condition θ∧θ = 0 translates to

ωi ∧ω j = 0,

ie, the sections commute. Since Ω̃1 is dualizable, we can also write the Higgs field as

θ : T̃X →End(E), or even θ : T̃X ⊗E → E,
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where T̃X is the twisted tangent bundle. The condition above then translates to commutativity
of the image, that is, [θ,θ] = 0; or equivalently that it extends to a morphism from the free
commutative algebra sheaf CSym T̃X →End(E).

We conclude that Higgs bundles are the same thing as modules over CSym T̃X whose underlying
sheaf is a vector bundle. We will return to this point later when introducing derived Higgs bundles.

Given a Higgs bundle (E,θ), we can deduce a morphism

θ2 : E⊗ Ω̃1 θ⊗1−−→ E⊗ Ω̃1 ⊗ Ω̃1 ∧−→ E⊗ Ω̃2.

using the wedge product on differential forms. We observe that the condition θ2 ◦θ = 0 is the
condition for a Higgs field. This process naturally extends to higher forms.

Definition 2.1.3. Let (E,θ) be a Higgs bundle. We define the Higgs complex (or Dolbeaut complex)
of E to be

A (X ,E)=
[
E

θ−→ E⊗ Ω̃1 θ2−→ E⊗ Ω̃2 θ3−→ . . .
]
∈D(X ét).

The cohomology of this complex RΓDol(E)= RΓét(A (X ,E)) is called the Dolbeaut cohomology
of E.

Remark 2.1.4. A remark on the nomenclature: if OX is equipped with the 0 Higgs field, then its
Dolbeaut complex splits

A (X ,OX )=⊕
i
Ω̃i[−i]

and hence its (hyper)cohomology agrees with the usual definition of Dolbeaut cohomology of X .
We will later see that this remark is a main ingredient in proving the unipotent p-adic Simpson
correspondence.

Proposition 2.1.5. The category Higgs(X ) admits a canonical closed symmetric monoidal structure
making the forgetful functor Higgs(X )→VB(X ét) strong monoidal. This category is then rigid:
every Higgs bundle is dualizable.

Proof/Def. If F and G are Higgs bundles with fields both denoted θ, then the tensor product
F ⊗G becomes a Higgs bundle using the Leibniz rule

θ(v⊗w)= θ(v)⊗w+v⊗θ(w),

noting that it squares to zero. The unit for this monoidal structure is just the vector bundle OX ,
with the zero Higgs field.

Similarly, this monoidal structure is closed, with internal hom Hom(F ,G ) and underlying
Higgs field θ( f )= θ f − f θ. Note that

HomHiggs(OX ,F )= ker(Γ(X ,F ) θ−→Γ(X ,F ⊗Ω1))=H0
Dol(Hom(X ,F )).

We also note that as usual for closed symmetric monoidal categories, the dual of some Higgs
bundle E has to be E∨ = Hom(E,OX ). That every Higgs bundle is dualizable follows from the
above construction and the rigidity of VB(X ét).
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§2.2. Derived
Higgs bundles

We also discuss the notion of a derived Higgs bundle (called Higgs perfect complex
in [4]). Informally, we can think of these objects as perfect complexes on T∗

X
which such that the pushfoward π∗ is perfect on X . All sheaves and perfect

objects are taken with regards to the analytic topology for convenience2.
In this section we denote by HX = CSym T̃X denotes the classical free commutative “symmetric”

algebra on the twisted tangent bundle.Locally, when X =Spa(A, A+), HX corresponds to HA , the
A-algebra

HA = CSymA Ω̃
∨
A =

∞⊕
n=0

(Ω̃∨⊗n
A )Σn

Locally, when X admits an étale map to a torus Spa(C〈T1 . . .Tn〉), HA is further isomorphic to
HA = A[T1, . . . ,Tn].

We can see HX as an analytic sheaf of rings in X . Sheaves of HX -modules can be seen as usual
as HX -modules in D(X )=D(OX ) via its OX -algebra structure. We have a forgetful functor

π∗ : D(HX )= HX -Mod(D(X ))→D(X )

which we denote by π∗ for a more geometric intuition. Using the theory of quasi-coherent
sheaves on rigid-analytic spaces, we can also see HX as an algebra inside of Dqc(X ), and D(HX )⊂
HX -Mod(Dqc(X )).

Definition 2.2.1. Let X be a smooth rigid-analytic variety over C. The category of derived Higgs
bundles is defined to be the full subcategory

H iggs(X )= Perf(HX )×D(OX ) Perf(OX )⊂ Perf(HX )

of Perf(HX ) consisting of all objects which are already perfect over OX , meaning all objects E

such that π∗E lies in Perf(X )⊂D(X ). An object in H iggs(X ) is called a derived Higgs bundle.

Remark 2.2.2. Since the forgetful functor π∗ : Perf(HX ) → D(X ) is an exact functor between
stable ∞-categories, H iggs(X ) is also stable. That is, H iggs(X ) is stable under (co)fiber and shifts
as a subcategory of Perf(HX ).

In other to be able to work with and justify this definition, we need to make sure that Higgs
bundles are derived Higgs bundles. In order to do so, we recall the descent result for perfect objects
proven in [2, Thm. 1.4]. More precisely, the functor

U 7→ Perf(A),

where U =Spa(A, A+) is an affinoid of X , is an analytic sheaf of ∞-categories. In particular, we
conclude that if X =Spa(A, A+) is affinoid then the canonical functor

Perf(A) ∼−→ Perf(X )

is an equivalence.
2But as we will see in Proposition 2.2.6, one could in principle define derived Higgs bundles for the étale topology

instead.
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Proposition 2.2.3. Let X be a smooth rigid-analytic variety over C. Then there is a fully faithful
functor

Higgs(X ) ,→H iggs(X )

which agrees with VB(X ) ,→Perf(X ) on the underlying OX -modules.

Proof. The data of a Higgs bundle is, as pointed out in the remark after Def. 2.1.1, just an HX -
module E which is a vector bundle over OX . Hence we need to check that the HX -module structure
induced from E is already perfect over HX . (We also remark that there is no reason for E to have
tor amplitude 0 as an HX -module.)

Now, this is a local problem so we may assume X to be affinoid, of the form X =Spa(A, A+)
and Ω̃1

X
∼=OX [T1, . . . ,Tn] to be polynomial. Then Higgs(X ) can be identified with the category of

pairs (E,θ) with E ∈VB(A) and A and a Higgs field θ : E →Ω1
A . This is then a problem on the

underlying rings, and we reduce to the following lemma, which is a variation of [4, Lemma 6.17]
that works in our situation.

Lemma 2.2.4. Let X be a rigid-analytic affinoid variety over C, and A a quasi-coherent OX -
algebra. Let also H =A [T] is the free quasi-coherent OX -algebra on an element T. Let Dqc(H)=
H-Mod(Dqc(X )) andπ∗ : Dqc(H)→Dqc(X ) be the forgetful functor. It has a left adjointπ∗ : Dqc(X )→
Dqc(H) given by tensoring with H.

Then every E ∈Dqc(H) gives us a fiber sequence

π∗E ⊗L
OX

H π∗E ⊗L
OX

H E
T⊗1−1⊗T

where the second map is the counit.
In particular, by induction and the fact that pulling back preserves perfectness, if E is perfect

over OX , then it is perfect over OX [T1, . . . ,Tn] for all n.

Proof. Let X =Spa(A, A+) and M the measures of the underlying analytic ring. Since Dqc(X ) is
generated by colimits and shifts by M [S], for S extremelly disconnected. Therefore The category
Dqc(H) = H-Mod(Dqc(X )) is generated (under colimits and shifts) by π∗M [S] = M [S]⊗L

A H,
so we may assume that E is of this form. But the sequence for π∗M [S] is just the sequence for
π∗M [∗] = H tensored over H with the π∗M[S], so we can further reduce to the case of E = H.
Now it is a mere check, as in [4, Lemma 6.17].

Corollary 2.2.5. Let X =Spa(A, A+) be a smooth affinoid rigid-analytic variety over C ith trivial
cotangent bundle (and hence HX =OX [T1, . . . ,Tn]). Then the category of derived Higgs bundles
can be identified with

H iggs(X )= Perf(HA)×D(A) Perf(A).

Proof. We have an inclusion Perf(HA)⊂ Perf(HX ). Let E be a derived Higgs bundle on X , that is,
suppose that π∗E is a perfect OX -module. We want to show that in fact E is in the image Perf(HA).
By descent for perfect objects, we have that Perf(X )= Perf(A), and hence, by induction and the
lemma above, we have our result.
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Now, our main theorem is a local unipotent Simpson correspondence. We can extend to a
stronger global correspondence using descent for Higgs bundles.

Proposition 2.2.6. The association X 7→ H iggs(X ) can be enhanced to a functor from Xop

ét
to

∞-categories. The associated prestack (passing to the core H iggs(X )∼=) is a stack, that is, we have
étale descent for Higgs bundles.

Proof. For the functoriality, it is enough to show that if f : Y → X is an étale morphism of smooth
rigid varieties then the morphism

f ∗ : Perf(HX )→ Perf(HY )

induced by the isomorphism f ∗HX
∼−→ HY of OY -algebras preserves the categories of derived

Higgs bundles. But this is clear since the underlying OY -module of f ∗E is the pullback functor
Perf(Y )→ Perf(X ).

Analytic descent for H iggs(X ) is clear by definition, since perfect modules descend for every
topos. We can then reduce the general étale case to X =Spa(A, A+) and Y =Spa(B,B+) with B/A
finite étale and such that the cotangent bundles are trivial. By the Corollary above, we reduce to
usual étale descent for perfect complexes, since HA → HA ⊗A B ∼= HB is étale.

Remark 2.2.7. In usual algebraic geometry, the category of (derived) Higgs bundles can be identified
as a subcategory of sheaves on the cotangent complex. In rigid geometry this is more subtle
classically, as the notion of affinoid morphisms is not as simple as its discrete counterpart.

However, we observe that the category Dqc(HX ), locally, can be identified with a category of
modules over an analytic ring in the sense of Clausen-Scholze. Indeed, its the modules over the
completion of HA for the canonical analytic ring structure in HA coming from the map A → HA
and the analytic ring structure of A. This should be identified with the category of quasi-coherent
sheaves on the (geometric) cotangent bundle of X, and π∗, π∗ and s∗ should be identified with
their geometric counterparts.

2.2.1 The symmetric monoidal structure, and the cohomology of Higgs bundles

The sheaf HX , seen as as object in Perf(HX ), is not a derived Higgs bundle, and therefore H iggs(X )
does not inherit the canonical symmetric monoidal structure from Perf(HX ). On the other hand,
we have a Hopf algebra structure on HX , and therefore Perf(HX ) admits another symmetric
monoidal structure making the forgetful functor π∗ symmetric monoidal. Concretely, this means
that HX is also a co-algebra, with maps

HX → HX ⊗HX , HX →OX

which in local coordinates (fixing an étale map to a torus with coordinates Ti) are of the form
Ti 7→ Ti ⊗1+1⊗Ti and Ti 7→ 1. This symmetric monoidal structure then comes from the derived
category of HX -modules, as the left derived functor of the usual closed symmetric monoidal
structure on HX -modules.

One also has a symmetric monoidal inclusion

s∗ : Perf(X ) ,→ Perf(HX )
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induced by the augmentation s : HX → OX coming from the zero map T̃X → OX . That is, we
“forget” the structure of OX -module to an HX module structure via s : HX → OX . Since the
composite OX → HX

s−→OX is the identity, we see that the underlying OX -module of s∗E is just E

itself. This is the right adjoint to the forgetful functor Perf(HX )→ Perf(X ). (Intuitively s∗E

just endows E with the zero Higgs field. Geometrically, this corresponds to derived Higgs bundles
supported on the zero section of the cotangent bundle.)

Similarly, this is a closed symmetric monoidal structure, meaning that we have an internal hom,
which also commutes with the forgetful s∗. This structure now passes down to Higgs bundles.

Proposition 2.2.8. Let X be a smooth rigid-analytic variety over C. The category of Higgs bundles
admit a closed symmetric monoidal structure making the forgetful funtor and the zero inclusion

π∗ : H iggs(X )→ Perf(X ), s∗ : Perf(X ) ,→H iggs(X )

have a canonical closed symmetric monoidal functor structure.

Proof. We must show that the symmetric monoidal structure on Perf(HX ) coming from the Hopf
algebra structure of HX preserves Higgs(X ). But this follows from the fact that the tensor and
hom commute with π∗ and the fact that Perf(X ) is preserved under these.

We can now give a more geometric explanation for the functors A and RΓDol defined in the
last section. As usual, cohomology can be understood as morphisms out of the tensor unit.

Definition 2.2.9. Let X be a smooth rigid-analytic variety over C. If E is a derived Higgs bundle
on X , we define

A (X ,E )=π∗RHomHX
(OX ,E ) ∈D(OX ), RΓDol(X ,E )=RΓétA (X ,E ),

where RHomHX
(E ,V ) denotes the internal hom computed in Perf(HX ).

We observe that, since s∗ is symmetric monoidal, the object OX inherts a canonical E∞-algebra
structure. Hence, both functors above inhert a lax-monoidal structure.

Proposition 2.2.10. Let E ∈Higgs(X ) be a Higgs bundle on X . Then the two definitions of A and
RΓDol agree.

Proof. Since the inclusion of Higgs bundles in H iggs(X ) is symmetric monoidal, it suffices to
prove the corollary. Now the proof follows as in [4, Cor. 6.22] from the Koszul resolution of the
zero section HX �OX . This is a resolution

OX ∼=
[
T̃d

X ⊗OX HX →···→ T̃X ⊗OX HX
µ−→ HX

]
of OX by locally free HX -modules. Here T̃d

X = (Ω̃d
X )∨, and µ is the structure map of the OX -algebra

HX .
We therefore conclude that RHomHX

(OX ,E)∼=A (E,θ) by analysing the dual differentials. We
finish the proof by taking RΓét on both sides.

We note that the definition above gives us a canonical lax-monoidal structure on the functors
A and RΓDol.
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Corollary 2.2.11. The lax structure endows A (X ,OX ) with an E∞-algebra struture. By the
proposition above, we can write

A (X ,OX )=⊕
Ω̃i[−i],

and we can recognize this to be the algebra structure coming from the wedge products

∧ : Ω̃i[−i]⊗ Ω̃ j[− j]→ Ω̃i+ j[−i− j].

§2.3. Unipotent
Higgs bundles

In this section we analyse the unipotent (and derived unipotent) Higgs bundles.
We note that this definition makes use of only the geometry of our space, and it
is remarkable that it will turn out to depend only on the étale homotopy type

(or more precisely the étale fundamental groupoid) of our space.
We finish this section by relating unipotent Higgs bundles with modules over the E∞-algebra

A (X ,OX ).

Definition 2.3.1. The category of unipotent Higgs bundles, denoted Higgs(X )uni, is the smallest
full subcategory of Higgs(X ) containing OX and closed under extensions. The category of derived
unipotent Higgs bundles H iggs(X )uni is smallest stable subcategory of H iggs(X ) spanned by the
unit.

A Higgs bundle in Higgs(X )uni is said to be a unipotent. That is, E is unipotent if there exists
a filtration

0⊂ E1 ⊂ E2 · · · ⊂ Er = E

by sub-Higgs bundles whose graded pieces are isomorphic to OX as Higgs bundles.

Remark 2.3.2. As the quasi-pro-étale vector bundle case, we have an inclusion

Higgs(X )uni ⊂H iggs(X )uni.

Clearly, the unit OX is unipotent. Also the category of unipotent Higgs bundles is closed under
extensions in Higgs(X ), and in particular under direct sums.

Remark 2.3.3. A rank one Higgs bundle that is unipotent must be isomorphic to the trivial Higgs
bundle OX . In this sense, unipotent Higgs bundles are orthogonal to Higgs line bundles.

However, if X is a smooth affinoid then any coherent sheaf with zero Higgs field is derived
unipotent. Indeed, by the descent results of [2] we can identify vector bundles and perfect complexes
of OX -modules with vector bundles and perfect complexes of R-modules. Using regularity we can
now find a resolution of any vector bundle by free modules, which implies the result.

Proposition 2.3.4. Let X be a smooth rigid-analytic variety over C. Then the category of (derived)
unipotent Higgs bundles inherits the closed symmetric monoidal structure from (derived) Higgs
bundles.
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Proof. The unit OX is (derived) unipotent. Let E be a unipotent Higgs bundle Consider the
category of all Higgs bundles F such that E⊗F is unipotent. Then OX is in this category and since
vector bundles are flat, and unipotent vector bundles are closed under extensions, this coincides
with Higgs(X )uni. The same argument works to see that the internal Hom is also preserved, since
Hom(E, ) is exact when E is a vector bundle.

For the derived case a similar argument shows that for any unipotent derived Higgs bundle
E the category of derived Higgs bundles F such that E ⊗F is derived unipotent is stable, and
similarly for the internal Hom.

Example 2.3.5. Let X be a proper rigid analytic variety with H1(X ,C)= 0 (for example anything
simply-connected such as Pn or a K3 surface). Then the category of unipotent Higgs bundles is
trivial in the sense that it is equivalent to the category of finite dimensional C vector spaces.

Indeed, by the Hodge decomposition (Corollary 3.3.6) we have

H1(X ,C)∼=H1(X ,OX )⊕H0(X ,Ω̃1)

so both groups on the right vanishes. The first vanishing says that all vector bundle extensions
of OX by OX are trivial, so if E is unipotent then it is isomorphic to O n

X as a vector bundle. The
second implies that the Higgs field is zero, since there are no globally defined 1-forms.

This example shows how unipotent Higgs bundles are intimately linked with the fundamental
group of the variety. This motivates a Tannakian study of the category of unipotent Higgs bundles.

Proposition 2.3.6. Let X be a proper, connected adic space over C. The category of unipotent
Higgs bundles is an abelian, rigid, tensor category. Fixing a point x ∈ X (C), then we also have a
canonical fiber functor

Fx : Higgsuni(X )→ C-Vect

sending E to Ex, which makes it into a Tannakian category.

Properness is essential for the theorem to work. If s : OX →OX is any section, then the kernel
in the category of unipotent bundles has to be 0 or OX .

Lemma 2.3.7. Let X /C be a proper rigid-analytic variety3. The category of unipotent vector
bundles, ie. the full subcategory of VB(X ) consisting of successive extensions of OX , is abelian.

Proof. The proof of [20, Chp. 4, Lemma 2] applies mutatis mutandis.

Proof (of Proposition 2.3.6). It follows straight from the lemma that the category of unipotent
Higgs bundles is abelian, since the kernel and cokernel will have canonical Higgs fields. We’ve
already seen in proposition 2.3.4 that unipotent Higgs bundles are closed under the symmetric
monoidal strucure. (In particular they form a rigid tensor category.)

Finally, the fiber functor is exact and faithful. Exactness is clear since any exact sequence
of vector bundles splits on a neighbourhood of x. Faithfulness now follows from exactness and
the fact that the category of unipotent vector bundles on proper spaces is abelian. Namely if a
morphism f : E → E′ is non-zero, its kernel is now a vector bundle of rank strictly less then the
rank of E, so fx is non-zero.

3Or more generally a locally ringed topos over a field k with H0(X ,OX )= k.
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Using the Tannakian reconstruction theorem we get the following definition, whose name
will be justified in Corollary 3.4.5.

Definition 2.3.8 (The unipotent fundamental group). Let X be a proper, connected adic space over
C, and fix a base point x ∈ X (C). Then the unipotent fundamental group of X at x is defined to be
the algebraic group

πuni1 (X , x)=Aut⊗(Fx).

We have a canonical equivalence Higgsuni(X ) ∼−→RepC(πuni1 ) and therefore this algebraic group is
indeed unipotent (since the regular representation is unipotent).

We can now relate unipotent Higgs bundles and A (X ,OX )-modules.

Proposition 2.3.9. The lax-monoidal functor A : H iggs(X )→D(OX ) induces a strong monoidal
equivalence

H iggs(X )uni ∼−→A (X ,OX )-Moduni,

where the right hand side is seen as the stable∞-category of modules over the E∞-algebra A (X ,OX )
(Corollary 2.2.11).

The full subcategory Higgs(X )uni ⊂H iggs(X )uni is identified with the smallest subcategory
of the right hand side which contains the unit and is closed under fiber sequences.

Proof. This is essentially the same proof as Proposition 1.2.5. Namely, we see that A is symmetric
monoidal by fixing an E and considering the subcategory of V such that the lax structure is an
isomorphism. Then the same argument shows this category contains to be stable (since we only
use that tensoring and A is exact). Now since every object is dualizable, fully-faithfulness of A

reduces to the isomorphism

Hom(OX ,E )∼=HomA (X ,OX )(A (X ,OX ),E ).

which is clear.

Remark 2.3.10. One can show, using the same proof, that unipotent Higgs bundles correspond to
RΓDol(X ,OX )-modules, that is,

RΓDol : H iggs(X )uni ∼−→RΓDol(X ,OX )-Moduni

is a symmetric monoidal equivalence. In fact the same methods also show that the functor

RΓét : A (X ,OX )-Moduni
∼−→RΓDol(X ,OX )-Moduni

is an equivalence.
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§2.4. Locally
unipotent Higgs
bundles

Unipotent Higgs bundles do not satisfy descent for the étale topology; for
example any line bundle is locally unipotent but OX is the only unipotent
Higgs bundle of rank 1. A more local version of this definition is the following.

Definition 2.4.1. A Higgs bundle is said to be locally unipotent if it unipotent after pullback to an
étale cover of X . The category of locally unipotent Higgs bundles is denote by Higgs(X )l.uni.

Similarly a derived Higgs bundle E is said to be locally derived unipotent if there exists an
étale cover f : Y → X such that EY is unipotent. The full subcategory of H iggs(X ) generated by
locally unipotent bundles is denoted H iggs(X )l.uni.

There is a fully faithful functor VB(Xan) ,→Higgs(X )l.uni given by endowing a vector bundle
with the zero field. This category is usually not abelian (for example the morphism O → O (1)
in P1 has no kernel, as the forgetful morphism would preserve it). A class of examples, due to
Simpson, are those Higgs bundles which are fixed under the Gm-action t(E,θ) = (E, tθ), that is,
those bundles for which there is an isomorphism

f : (E,θ) ∼−→ (E, tθ)

for some t ∈ C×.

Proposition 2.4.2. Let X be a smooth rigid-analytic space over C. The association Y 7→Higgs(Y )l.uni

and Y 7→H iggs(Y )l.uni becomes a stack on the small étale site X ét of X . The canonical natural
transformations

Higgs(Y )uni →Higgs(Y )l.uni, H iggs(Y )uni →H iggs(Y )l.uni,

identify the latter as a sheafification of the former.

Proof. By descent for (derived) Higgs bundles, we can see that locally (derived) unipotent Higgs
bundles form a stack. Indeed, a descent data along a cover Y → X glues uniquely to a Higgs bundle
E and EY is locally unipotent hence so is E. Any morphism from Higgs( )uni into a sheaf factors
locally unipotent sheaves by gluing, so this is indeed the sheafification.

Although we will not need the characterizations below, one can relate the notion of unipotent
Higgs bundles with those whose Higgs field is nilpotent.

Definition 2.4.3. Let X be a smooth rigid-analytic variety and let (E,θ) be a Higgs bundle over X .
We say that E is nilpotent if θ is, in the sense that the image of

T̃1
X →End(E)

lies in the nilpotent endomorphisms of E.

Some remarks about the definition. To check this condition we can locally trivialize T̃1 which
yields us d operators

θ1, . . . ,θd : E → E
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on E. Then the definition above says that these operators are nilpotents. One may worry that this
depends on trivialization, but since the θi commute any linear combination of the θi is nilpotent
also. Alternatively a Higgs bundle is nilpotent if the composite

E → E⊗Ω1 →···→ E⊗ Ω̃1 ⊗·· ·⊗ Ω̃1

is eventually zero.
Being nilpontent is already local for the étale topology, since one can check being zero on an

étale cover, and the index of nilpotency cannot surpass the rank of the bundle in question (by
Nakayama’s lemma and the case of fields). Geometrically these bundles are those supported on a
formal completion of the zero section of the cotangent bundle.

Proposition 2.4.4. Let X be a smooth rigid-analytic space and (E,θ) be a Higgs bundle. Then the
following hold:

i. If E is locally unipotent then it is nilpotent.

ii. If E is nilpotent, then it is locally derived unipotent.

iii. If dim X = 1 and E is nilpontent, then it is locally unipotent.

Proof. For i), we see that the trivial Higgs bundle is nilpotent and an extension of nilpotent
endomorphisms is nilpotent. For ii) we pass to an open affinoid cover trivializing the tangent
bundle as above and write θi for the nilpotent endomorphisms of E. Since they commute we see
that K =⋂

keri θi is a non-trivial sub-Higgs sheaf with zero Higgs field. Passing to the quotient
E/K we get another Higgs sheaf with nilpotent Higgs field, and this process must end by finite
generation. By regularity we see that any Higgs sheaf with zero Higgs field is locally derived
unipotent, and hence so is E by induction.

For iii), let E be a nilpotent Higgs bundle. Consider as above the subsheaf K ⊂ E which, on
an affinoid Spa(A, A+) trivializing T1 and E, is given by the kernel of the Higgs field. Since the
ambiguity of generator does not change the kernel K , we see that K is a well defined sub-Higgs
sheaf of E. We claim that K is furthermore a sub-bundle, meaning that E/K is locally (finite)
projective.

But by regularity and our dimension assumption we see that A is a principal ideal domain and
hence E/K ⊂ E is free, being a submodule of a free module. Hence by induction we see that E is
unipotent.

Remark 2.4.5. We suspect that point iii) above is not valid in higher dimensions, even assuming
properness. The problem seem to be related to the stronger problem of finding a subbundle E0 of
a nilpotent bundle E (ie. with E/E0 also locally free) whose Higgs field is 0. One can construct
examples where the kernel of the Higgs field is not a subbundle.

3 The correspondence

We want to relate unipotent quasi-pro-étale vector bundles and unipotent Higgs bundles. We’ve
established in Propositions 2.3.9 and 1.2.5 that we can relate these to unipotent objects in the
category of Rν∗ÔX -modules and A (X ,OX )-modules respectively.

23



Therefore we seek to construct an isomorphism

A (X ,OX ) ∼−→Rν∗ÔX

of E∞-algebras which will realize the unipotent Simpson correspondence.
The sheaf of E∞-algebras Rν∗ÔX admits a filtration, the Hodge-Tate filtration, which for X

proper, in view of the primitive comparison theorem, induces a filtration on the étale cohomology
of X . This filtration is analogous to the Hodge filtration in complex geometry.

The proof of the correspondence will then be given in the following steps below. We observe
that we are essentially just reproving the Hodge-Tate decomposition.

� Showing that the associated graded grHTRν∗ÔX is the symmetric E∞-algebra on Ω̃1
X [−1]

(Theorems 3.1.7 and 3.2.2).

� Showing that A (X ,OX ) is the free E∞-algebra on Ω̃1
X , and hence is isomorphic to the

associated graded of the Hodge-Tate filtration (Corollary 3.1.3).

� Showing that the Hodge-Tate filtration splits canonically as soon as we fix a deformation
X̃ /(B+

dR/ξ2) (Corollary 3.3.2), which exists canonically for varieties defined over a finite
extension of Qp , or non-canonically for compactifiable or affinoid C-varieties.

Finally we remark that we are working over an algebraically closed field C just for convenience.
The reader may replace C by an arbitrary mixed characteristic perfectoid field containing all p-
power roots of unity. Such assumption goes back to p-adic Hodge theory and is used implicitly in
Theorem 3.1.7 and Theorem 3.2.2.

§3.1. The
Hodge-Tate
filtration

In this subsection we defined the Hodge-Tate filtration on pro-étale cohomology.
We start by showing an important computation in group cohomology that implies
that both the associated graded of Rν∗ÔX and A (X ,OX ) are free E∞-algebras. This
will allow us to easily define maps of E∞-algebras via the universal property.

In the lemma below, we will denote Sym(M[−1]) by SymM[−1] to clean up the notation. This
is a coconnective analogue of a theorem of Illusie (which asserts the same but for M[1] instead).

Lemma 3.1.1. Let M be a finite locally free OX -module on X ét. Then there is an equivalence of
E∞-algebras

SymM[−1]∼=
⊕

n

n∧
M[−n],

where the right hand side is endowed with the usual wedge product.

In other words, the above implies that SymM[−1] is formal, that is, equivalent to the direct sum
of its cohomology sheaves (equivalent, it can be represented by a complex with zero differential).

Proof. This is a local statement, so we can suppose that M is free, and since both sides are take
direct sums to coproducts (of E∞-algebras), we can also reduce to the case of rank 1. We can also
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do this computation at the level of pre-sheaves, since it will be clear a posteriori that the result is a
sheaf.

We consider a Q-algebra R, and construct an isomorphism SymR[−1] ∼= R ⊕R[−1]. By [17,
Ex. 3.1.3.14], for any ring R we have SymR[−1]∼=⊕

Symn R[−1], with

Symn R[−1]= (R⊗n[−n])hΣn = (R⊗n)hΣn [−n].

We note that R⊗n ∼= R as an R-module, but Σn acts via the sign action.
To finish, we note that in characteristic 0 we have that RhΣn = 0 for the sign action on R.

Indeed, our assumptions imply

Hi(RhΣn )=Hi(Σn,R)= 0, i > 0,

since Σn is a finite group. Finally H0(RhΣn )= RΣn = R/2R = 0 since 2 is invertible in R.

Remark 3.1.2. For the above result to be true, it is crucial that we are in characteristic 0. If 2 is
not invertible then RΣn might be non-zero. Furthermore, the group homology of Σn is rather
non-trivial with Z or Fp coefficients!

Corollary 3.1.3. Let X be a smooth, rigid-analytic variety over C. Then there is a canonical
isomorphism of E∞-algebras

SymΩ̃1[−1]∼=
⊕

n
Ω̃n

X [−n]=A (X ,OX ).

Proof. Lemma above and Corollary 2.2.11.

Given a map Ω̃1[−1] → R in D(X ), with R in CAlg(D(X )), one can explicitly define the
homotopy class of the induced morphism SymΩ̃1[−1] → R (See for example the proof of [13,
Prop. 7.2.5]). Since we’re in characteristic 0, the canonical map (Ω̃1)⊗n → Ω̃n admits a section

ω1 ∧·· ·∧ωn 7→ 1
n!

∑
σ∈Σn

sgn(σ) ωσ(1) ⊗·· ·⊗ωσ(n);

this allows us to define the induced map as the direct sum of the maps

Ω̃n[−n]→ (Ω̃1[−1])⊗n → R⊗n → R.

In other words, we must now show that R1ν∗ÔX generates grHTRν∗ÔX as a graded ring via the
cup product. (This also works for any M in the lemma above).

Definition 3.1.4 (The Hodge-Tate filtration). Let X be a smooth rigid-analytic variety over C and
let ν : Xqproét → X ét be the canonical map of sites. Then the Hodge-Tate filtration on Rν∗ÔX

is defined to be the canonical filtration on it, that is, the filtration induced by τ5iRν∗ÔX . The
associated graded of Rν∗ÔX is therefore

grHTRν∗ÔX =⊕
i

Riν∗ÔX [−i].
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Remark 3.1.5. The above definition still makes sense for all proper rigid analytic varieties X over C,
however, it is only well behaved for X smooth. In general, one can use the tools of Kan extensions
to reduce to the smooth case. This is made precise using the Éh topology in [13].

Remark 3.1.6. The above induces a filtration, also called the Hodge-Tate filtration, on the pro-
étale cohomology RΓét(X ,Rν∗ÔX ) = RΓqproét(X , ÔX ) of X . This descends to a filtration on
cohomology groups Hk

qproét
(X , ÔX ) via the image of Hk

ét
(X ,τ5iRν∗ÔX ). If the filtration splits,

then in fact we have injections

. . .Hk
ét(X ,τ5iRν∗ÔX )⊂Hk

ét(X ,τ5i+1Rν∗ÔX )⊂ ·· · ⊂Hk
qproét(X , ÔX )

and the associated graded will be Hk
ét

(X ,Riν∗ÔX [−i])=Hk−i
ét

(X ,Riν∗ÔX ).

We can now compute the associated graded of the Hodge-Tate filtration. All the essential ideas
of the proof are not new, and we follow closely the ideas of [6], [7] and [13].

Theorem 3.1.7. Let X be a smooth rigid-analytic variety over C. Then R0ν∗ÔX ∼=OX , R1ν∗ÔX is
a vector bundle of rank equal to the dimension of X and the induced map

Sym(R1ν∗ÔX [−1]) ∼−→ grHTRν∗ÔX =⊕
n

Rnν∗ÔX [−n]

is an equivalence of E∞-algebras. Here SymM denotes the free E∞-algebra on M ∈D(X ).

Proof. We have a map R1ν∗ÔX [−1] → grHTRν∗ÔX given by the inclusion of the degree 1 part.
By the lemma and the above computation, we need to show that Riν∗ÔX =∧i R1ν∗ÔX and that
R1ν∗ÔX generates the whole cohomology ring via cup product.

The statement is étale local so we can suppose that X is an affinoid admitting an étale map to a
rigid-analytic torus

X →Tn =SpaC
〈
T±1

1 , . . . ,T±1
d

〉
.

Now, the torus admits a quasi-pro-étale cover by an affinoid perfectoid

T̃n =SpaC
〈

T±1/p∞
1 , . . . ,T±1/p∞

d

〉
→Tn

and therefore so does X by base change. That is, we have a perfectoid affinoid cover X̃ = T̃n×Tn X →
X of X which, by the acyclicity of ÔX (Theorem B.0.12), can be used to compute the cohomology
of ÔX as Čech cohomology on global sections. Now T̃n →Tn (and hence X̃ → X ) is a Zp(1) torsor,
since it is a limit of the SpaC〈T1/pn〉 which are Z/pn(1) torsors 4.

Writing X = Spa(R,R+) and X̃ = Spa(R∞,R+∞), We conclude that this Čech cohomology
complex is just the continuous cohomology

RΓqproét(X , ÔX )∼=RΓcont(Zp(1),R∞)

for this action of Zp(1) on R∞. This computation is carried out on an integral level in [22,
Lemmas 4.5, 5.5], which implies R1ν∗ÔX is free and generates the higher pushfowards via cup
products.

4A word of warning on a potentially confusing abuse of notation. We have introduced a pro-finite-étale universal
cover X̃ of X , but this is not the same as the X̃ defined above. Instead, the construction above is much simpler as it only
captures the pro-p part of the fundamental group, which is enough for the computation.
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Corollary 3.1.8. The Hodge-Tate filtration on Rν∗ÔX splits if and only if the induced filtration
on τ51Rν∗ÔX splits.

Proof. Indeed, if we have a splitting R1ν∗ÔX [−1]→ τ51ÔX we can compose with the filtration
map to obtain a map

SymR1ν∗ÔX [−1] ∼−→Rν∗ÔX

which is an equivalence, because it becomes as equivalence on associated graded. By the theorem
above, the Hodge-Tate filtration splits. The converse is immediate.

§3.2. The lift to
B+
dR/ξ2

The non-abelian Hodge correspondence depends on a flat lift X̃ of X to the ring
of periods B+

dR/ξ2, that is, to Spa(B+
dR/ξ2,Ainf/ξ2). In this subsection we explore

a link between the pro-étale cohomology of ÔX and the cotangent complex,
which finishes our computation of the associated graded grHTRν∗ÔX and allows us to split this
filtration when the aforementioned lift exists.

For ease of notation, we will also denote B+
dR/ξ2 by B2 in the computations.

Definition 3.2.1. Let X be an adic space over C. A (flat) lift to B+
dR/ξ2 = B2 (or a deformation to

B+
dR/ξ2) is a cartesian square

X X̃

SpaC SpaB2

with X̃ → B2 flat. Here, the positive de Rham ring is given its canonical topology coming from
the p-adic topology of Ainf/ξ2. In other words, a lift to B+

dR/ξ2 is an adic space X̃ flat over B+
dR/ξ2

together with an identification of X with the zero locus of ξ.

The deformation theory of X is controlled by the cotangent complex Lan
X /C , which can be

thought as a “complete” version of the usual (topos-theoretic) cotangent complex (see definition
A.0.7).

To understand what is the role of the lift in splitting the Hodge-Tate filtration, we first
remind the reader that if X ,→ Y is a closed immersion given by a coherent ideal sheaf I , then
τ51Lan

Y /X
∼=I /I 2[1] (see proposition A.0.11 on the appendix). This implies that

τ51Lan
C/B2

= C(1)[1], τ51Lan

X̃ /X
=OX (1)[1],

where the second isomorphism follows from flatness: indeed if X /SpaB2 is flat, we get an isomor-
phism f ∗C(1)∼=OX (1) ∼−→I , where I is the ideal defining X ,→ X̃ , by applying the exact functor
f ∗ to the exact sequence 0 → C(1) → B+

dR/ξ2 → C → 0 seen as sheaves on the topological space
|SpaC| = |SpaB2|.

Now assume that X is smooth over C, so in particular Lan
X /C =Ω1

X /C . The transitivity fiber
sequence for X →SpaC →SpaB+

dR/ξ2 now gives us a fiber sequence

OX (1)[1]→ τ51Lan
X /B2

→Ω1
X /C →O (1)[2]
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(observe how the smoothness assumption allows us to truncate). This means, in particular, that
there is an obstruction class o ∈Ext2(Ω1

X /C,OX (1))=H2(X , T̃X ) which vanishes precisely when
this fiber sequence splits. This is equivalent to constructing an isomorphism

τ51Lan
X /B2

(−1)[−1]=OX ⊕ Ω̃1
X /C[−1]

identifying the map OX → τ51Lan
X /B2

(−1)[−1] with the map from the fiber sequence. The following
theorem now relates the vanishing of this class and splitting the Hodge-Tate filtration. This is a
convenient phrasing of a know result which we include the proof for convenience.

Theorem 3.2.2 ([7, Prop. 8.15] [13, Thm. 7.2.3]). Let X be a smooth rigid-analytic space over C.
Then there is a functorial equivalence

τ51Lan
X /B2

(−1)[−1] ∼−→ τ51Rν∗ÔX

in the derived category of OX -modules. Furthermore, the filtration induced by the fiber sequence
above agrees with the Hodge-Tate filtration on the right hand side. In particular, R1ν∗ÔX ∼= Ω̃1

X .

Proof. First, we see that τ51Lan
X /B2

is isomorphic to Lan
X /Binf

. This is due to the fact that ξ is a
non-zero divisor on Binf, and hence Lan

C/Binf
= ξ/ξ2[1]. The transitivity sequence for X →SpaC →

SpaBinf yields

Lan
X /Binf

=Cof(Ω1
X /C[−1]→OX (1)[1]),

the cofiber of the same morphism coming from the fiber sequence above.
The proof of this theorem now relies on generalizing the cotangent compex to the quasi-pro-

étale site of X , computing it there, and comparing to Lan
X /Binf

. We recall that Xqproét has a basis of
affinoid perfectoids; we can therefore define

Lan

ÔX /Binf
=Lan

Ô+
X /Ainf

[
1
p

]
,

and Lan

Ô+
X /Ainf

to be the sheafification of the presheaf sending an affinoid perfectoid Spa(A, A+)

to Lan
A+/Ainf

. We remark that this cotangent complex is just the p-completed algebraic cotangent
complex LA+/Ainf

since perfectoid algebras are uniform.
The proof now relies on the existence of a natural comparison morphism

Lan
X /Binf

→Rν∗Lan

ÔX /Binf

on the étale site X ét which is furthermore natural in X . Indeed, the data of such morphism
corresponds to maps Lan

X /Binf
(U) → Lan

ÔX /Binf
(V ) for V →U quasi-pro-étale morphism with V an

affinoid perfectoid and U → X étale; these come from the functoriality of the analytic cotangent
complex discussed in the appendix.

We now proceed to compute the pro-étale cotangent complex. Fix an affinoid perfectoid
Spa(A, A+) in Xqproét. Now A+ is a relatively perfect OC-algebra, which implies that Lan

A+/Ainf
= 0.

Therefore the transitivity fiber sequence of Ainf →OC → A+ gives us

Lan
OC /Ainf

⊗OC A+ ∼−→Lan
A+/Ainf
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This left hand side is well understood; since Ainf�OC is a closed immersion with kernel generated
by the regular element ξ then Lan

C/Binf
is just (ξ)/(ξ2)[1], so this tensor product is a shift of the Breuil-

Kisin twist A+{1}. By varying A and sheafifying we obtain a equivalences5

Ô+
X {1}[1]∼=Lan

OC /Ainf
⊗OC ÔX

∼−→Lan

Ô+
X /Ainf

; OX (1)[1] ∼−→Lan

ÔX /Binf
.

We have now produced a natural morphism Lan
X /Binf

→Rν∗ÔX (1)[1] which we must show that
identifies the left-hand side with a truncation of the right-hand side. That is, we must show that

Lan
X /Binf

(−1)[−1]→ τ51Rν∗ÔX

is an equivalence. Now, this result is again local so we can again suppose that X is an affinoid
admitting an étale map to a torus

f : X →Tn

and therefore reduce to the torus itself: we already know that the right hand side has coherent
cohomology, and in the left hand side we have Lan

X /Tn = 0 since X /Tn is étale, which implies that
the canonical map

f ∗Lan
Tn/Binf

∼−→Lan
X /Binf

is an equivalence.
Since Ω1

Tn is also free and of the same rank, it follows from Theorem 3.1.7 that both sides
are isomorphic, but we still need to check that the induced map is an isomorphism. It is clear by
definition that on degree zero this is an isomorphism. For the result on Ω1

X , that is on degree one,
we need to be a bit more careful, and the computation was carried integrally in [7, Sec. 8.3].

In particular, this theorem implies links the obstruction class with p-adic Hodge theory.

Corollary 3.2.3. Let X be a smooth rigid-analytic variety over C. The obstruction class o ∈
Ext2(Lan

X /C,OX (1))=H2(X , T̃X ) defined above detects precisely when the Hodge-Tate filtration
splits.

Corollary 3.2.4. Let X /C be a smooth affinoid rigid-analytic variety, or a smooth rigid-analytic
curve. Then the Hodge-Tate filtration always splits.

Proof. In both cases H2(X , T̃X )= 0.
5The Breuil-Kisin twist A+{1} is almost isomorphic to A(1), so they agree after inverting p.
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§3.3. Splitting the
Hodge-Tate
filtration

Finally, we can compare the obstruction class coming from Theorem 3.2.2
to split the Hodge-Tate filtration outside of the affinoid setting. The results
in the last section allow us to relate the problem of finding the spitting to
the geometric problem of finding a flat deformation to B+

dR/ξ2.
We are also able to be more precise here. The vanishing of the class o determines a splitting but

it is not canonical. However, remembering the lift makes it so. This result is in [13, Prop. 7.1.4],
but we given a different, slightly more direct proof.

Theorem 3.3.1. Let X be a smooth rigid-analytic variety over C. Then each flat deformation of X
to B+

dR/ξ2 determines a canonical splitting of the Hodge-Tate filtration on Rν∗ÔX .

Proof. We now need the other fiber sequence associated to the flat lift ι : X ,→ X̃ . Namely, we
consider the composition X ,→ X̃ →SpaB2 which yields a fiber sequence

Lι∗Lan

X̃ /B2
→Lan

X /B2
→Lan

X̃ /X

and since ι is a closed immersion with ideal OX (1) we have τ51Lan

X̃ /X
= OX (1)[1]. We claim

that the induced map τ51Lan
X /B2

(−1)[−1]→ τ51Lan

X̃ /X
(−1)[−1]→OX splits the inclusion of OX →

τ51Lan
X /B2

(−1)[−1]. That is, we must show that the composite (beware, this is no triangle)

f ∗Lan
B2/C Lan

X /B2
Lan

X̃ /X
δ α

is an equivalence ( f being the structure morphism f : X → SpaC) induces an isomorphism on
degree 1.

Let H denote the cohomology of complexes (as opposed to hypercohomology). The H1 are
isomorphic to OX (1), a line bundle, and therefore it is enough to show that the induced morphism
is surjective. We see that δ is an isomorphism from its defining fiber sequence. For α we consider
the exact sequence

H1(Lan
X /B2

) α−→H1(Lan

X̃ /X
)→H0(Lι∗Lan

X̃ /B2
),

and it is enough to show that the last arrow are zero to see surjectivity. This is given by the
differential

H1(Lan

X̃ /X
)∼= ξO X̃

d⊗1−−→Ω1
X̃ /B2

⊗O X̃
OX ∼=H0(Lι∗Lan

X̃ /B2
)

so it suffices to note that dξ= 0 since the differentials are B2-linear.

Corollary 3.3.2. Let X be a smooth rigid-analytic variety over C. Then any flat lift X ,→ X̃ to
B+
dR/ξ2 induces an equivalence of E∞-algebras

SymΩ̃1
X [−1] ∼−→Rν∗ÔX .

We now tackle the problem of actually producing lifts to B+
dR/ξ2, and therefore splittings of

the Hodge-Tate filtration. This following criterion follows from the description of the Galois-
invariants of B+

dR/ξ2.
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Lemma 3.3.3. Suppose that X is defined over K , a finite extension of Qp. Then there is a canonical
lift X ,→ X̃ to B+

dR, and hence to B+
dR/ξ2.

Proof. It suffices to find a continuous map making the diagram

B+
dR/ξ2 C

K

commute, since the lift will be given by the base-change from K to B+
dR/ξ2, which is automatically

flat.
Now this follows from the study of B+

dR and the identification of K with the GK -invariants
of B+

dR. We note that this crucially fails for C, as there is no continuous ring homomorphism
C →B+

dR.

Lemma 3.3.4. Let X ,Y be rigid spaces over C and suppose there exists an étale map

f : Y → X

and that X admits a lift X ,→ X̃ to B+
dR/ξ2. Then Y admits a lift Y ,→ Ỹ to B+

dR/ξ2 which is even
étale over X̃ . This lift is functorial on X ét.

Proof. This follows by the topological invariance of the étale site, since the extension X ,→ X̃ is
square-zero. That is, given an étale morphism Y → X there is a unique extension Ỹ → X̃ which is
étale, and hence flat over B+

dR/ξ2. Functoriality follows immediately from the uniqueness of the
étale lift.

Remark 3.3.5. Using more advanced techniques one can show that, in fact, all proper (or more
generally compactifiable) rigid spaces X /C admit a flat deformation to B+

dR/ξ2. This is proven in
[13, Thm. 7.4.4].

Corollary 3.3.6 (The Hodge-Tate decomposition). Let X be a proper, smooth rigid-analytic variety
over C. Then any lift X ,→ X̃ to B+

dR/ξ2 induces a Hodge-Tate decomposition

Hn(X ,C)∼=
⊕

i+ j=n
Hi(X ,Ω̃ j

X ). (hodge)

If X is defined over SpaK for K a finite extension of Qp and C =Cp , this is also equivariant for
the Galois action on both sides.

Proof. Apply RΓét to Corollary 3.3.2 and use the primitive comparison theorem (Theorem B.0.13).
The Galois equivariance follows from the canonicity of the lift for varieties defined over K .
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§3.4. Finishing
the proof

Now we have all the ingredients for proving the unipotent Simpson correspon-
dence. We establish in many different forms for ease of use, and draw some
basic consequences of it.

Theorem 3.4.1 (The unipotent correspondence). Let X be a smooth rigid-analytic space over C,
endowed with a lift X̃ to B+

dR/ξ2. There is canonical exact equivalence of symmetric monoidal
abelian categories

Higgs(X )uni ∼−→VB(Xqproét)uni; .

between unipotent Higgs bundles and unipotent quasi-pro-étale vector bundles. This equivalence
is natural for morphisms which can be lifted to the deformations.

Similarly, under the same assumptions, there is a canonical equivalence of symmetric monoidal
stable infinity categories

H iggs(X )uni ∼−→ Perf(Xqproét)uni;

between derived unipotent Higgs bundles and derived unipotent quasi-pro-étale vector bundles.
This equivalence is natural for morphisms which can be lifted to the deformations.

Proof. Follows from corollary 3.3.2 together with the results above, by noting that both the
1-categorical and derived unipotent objects are preserved under monoidal categorical equivalences,
and that

SymΩ̃1
X [−1] ∼−→A (X ,OX )

as E∞-algebras (Corollary 2.2.11 and Lemma 3.1.1).

Corollary 3.4.2. Let X be as above. There are symmetric monoidal equivalences

Higgs(X )l.uni ∼−→VB(Xqproét)l.uni; H iggs(X )l.uni ∼−→ Perf(Xqproét)l.uni;

between locally unipotent objects in each category.

Proof. If we fix a lift of X to B+
dR/ξ2, then we also get a lift of each Y ∈ X ét in a compatible way

by Lemma 3.3.4. It follows that the correspondence above can be improved to an equivalence of
pre-stacks on X ét, and hence an equivalence on their sheafifications.

Corollary 3.4.3. Let X be a rigid-analytic C-variety which admits a deformation to B+
dR/ξ2. If

(E,θ) is a locally unipotent Higgs bundle on X , and Ẽ is the correponding quasi-pro-étale vector
bundle, then

RΓqproét(X , Ẽ)∼=RΓDol(X ,E).

Corollary 3.4.4. Let f : X →Y be a morphism of smooth, proper, connected rigid-analytic varieties.
Let also x̄ be a geometric point of X and ȳ= f (x̄) and suppose that f∗ : π1(X , x̄) ∼−→π1(Y , ȳ) is an
equivalence. Then we have a symmetric monoidal equivalence of categories

Higgs(Y )uni ∼−→Higgs(X )uni, H iggs(Y )uni ∼−→H iggs(X )uni.

That is, unipotent Higgs bundles are invariant under π1-equivalences.
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Proof. Follows by the equivalence above and 1.2.4.

On the same vein, we can now recognise the Tannakian group associated to Higgs(X )uni as le
π1 rendu nilpotent [9]. (see also [9, §10.25] for the trancendental version of this corollary.)

Corollary 3.4.5. Let X be proper, smooth connected and pointed over C. The unipotent funda-
mental group 2.3.8 is the unipotent hull of π1(X , x̄).

Proof. This is essentially by definition, see [9, Eq. 10.24.2].

A The cotangent complex and deformation theory

Adic spaces admit cotangent sheaves which are defined analogously to schemes, but taking into
consideration the topology of our modules (we want differentials to be continuous to talk about
derivatives of analytic functions).

For simplicity we omit the superscript and write Ω intead of Ω1 in the discussion below. Also,
the analytic cotangent sheaf will carry an ornament Ωan in this appendix for clearness, but we
will drop this in the main text, since we are only dealing with adic spaces therein. The following
definition is due to Huber, and it was used to give the first definition of smooth morphisms of adic
spaces. We refer the reader to [16, Sec. 1.6] for proofs and further discussions of the topic.

Definition A.0.1 (Huber [16, Def.1.6.1]). Given Huber rings A,B and A → B a morphism topolog-
ically of finite type, a universal derivation is a continuous map

d : B →Ωan
B/A

into a complete topological B-module ΩB/A which satisfies the Lebniz rule, and is universal one
such, ie, any other continuous derivation onto a complete module M factors uniquely as

A Ωan
B/A

M

d

Universal derivations exist and commute with base change and localization as expected. In
particular, we can define a cotangent sheaf Ωan

X /Y for adic spaces for tft morphisms f : X →Y , and
its a coherent OX -module. From now on we assume X ,Y to be rigid-analytic varieties over K for
simplicity.

Remark A.0.2. Of course, Ωan
B/A is to be though as a complete version of the usual cotangent

sheaf. The universal property yields a natural map ΩB/A →Ωan
B/A which is not an isomorphism

in general. One shows that Ωan
B/A is the largest finitely generated B-module quotient of ΩB/A [21,

Lemma 7.2.37]. It is therefore an isomorphism whenever B is a finite A-algebra.
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Concretely, the analytic cotangent sheaf can be computed via an analogous procedure to the
case of algebraic varieties. First on computes for closed disks Bn

K ,

Ωan
K〈Ti〉/K = K〈Ti〉dT1 +·· ·+K〈Ti〉dTn.

Then one can extend this to defineΩan
X /K for all rigid-analytic varieties in a functorial way, meaning

one can also compute the coderivative and therefore define the sheaf Ωan
Y /X via the exact sequence

Ωan
Y /K Ωan

X /K Ωan
Y /X 0

δ f

In particular, this discussion implies the following comparison theorem.

Proposition A.0.3. Let f : Y → X be a morphism of schemes locally of finite type over K . There is
a natural isomorphism

(ΩY /X )an ∼−→Ωan
Y an/Xan .

between the analytification of the differentials and the differentials of the analytification.

Proof. The analytification of a coherent sheaf is the pullback via the morphism of locally ringed
spaces φ : Xan → X , and therefore the result reduces by the exact sequence above to the case of
Y =An

K and X =SpecK . Now the result follows by pulling back the isomorphism ΩX ∼=O n
X .

We now move the discussion to the cotangent complex, and its central role in deformation
theory. We begin by reviewing the definition for non-topological algebras.

Definition A.0.4 (Cotangent complex). Let R be a ring and A/R an A-algebra. The (algebraic)
cotangent complex of A/R is defined to be

LA/R =ΩP•/R ⊗P• A,

where P• → A is a choice of cofibrant resolution of A as a simplicial R-module.

Such resolution always exists. For example any resolution by polynomial algebras works and
the result is, of course, independent of such choices. To construct one, that is even functorial, just
take P0 = R[A] and Pi+1 = R[Pi].

In practice, we can reduce the computation of LA/R using the following principles.

Proposition A.0.5. Let A be an R-algebra. The following statements hold.

� If B/A is an A-algebra then we have a transitivity fiber sequence

LA/R ⊗L
A B →LB/R →LA/R

in D(B).

� If B = A/I and A is a smooth R-algebra, we have

τ51LB/R = [
I/I2 →ΩA/R

]
.

Furthermore if I is defined by a regular sequence then LB/A = τ51LB/A .
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The importance of the cotangent complex is that it controls deformations. This is an old result
conjectured initially by Grothendieck and proved by Illusie on his PhD thesis. We recall here the
result in the context of schemes, in the flat context, which is the one we really care about.

Theorem A.0.6 (Illusie). Let f0 : X0 → S0 be a flat morphism of schemes and j : S0 ,→ S be a closed
immersion given by a square-zero ideal I ⊂OS �OS0 . There is a obstruction class

o( f0) ∈Ext2
OX0

(LX0/S0 , f ∗0 I )

that vanishes precisely when X0 admits a flat deformation X0 ,→ X → S. The isomorphism class
of such solutions are a torsor under Ext1(LX0/S0 , f ∗0 I ), and the automorphism group of any such
solution is Ext0(LX0/S0 , f ∗0 I ).

We now generalize the above discussion to the case relevant to us, that is, to the setting of adic
spaces. Here we follow closely the exposition of [13, Sec. 7.1] (but see also [21]).

A first naive guess would be to define a (derived) p-complete version of the cotangent complex.
Given R0 a p-complete Zp-algebra, and A → B a map of R0-algebras, we define

L̂B/A = lim
n

(LA/B ⊗L
R Cof(R

pn

−−→ R))),

where the limit and cofiber are taken in the ∞-categorical sense. This is an animated B-module,
meaning that it lies on D=0(B), and by analysing the K-flat resolution one obtains H0(L̂B/A) =
Ω̂1

B/A .

Definition A.0.7 (The analytic cotangent complex). Let A,B be a pair of p-adic affinoid Huber
pairs. The analytic cotangent complex is defined to be the filtered colimit

L+
B/A = colim

A0→B0
L̂B0/A0 , Lan

B/A =L+
B/A

[
1
p

]
taken inside the ∞-category D(B)∧. Here, the colimit is indexed by the filtered category of rings
of definition A0 ⊂ A+ and B0 ⊂ B+.

This construction can be sheafified6 to obtain an analytic positive cotangent complex L+
Y /X ∈

D=0(O+
X ) for analytic adic spaces Y /X living over SpaQp , and finally inverting p we get Lan

Y /X =
L+

Y /X [1/p] ∈D=0(OX ). We also have H0(Lan
Y /X )=Ωan

Y /X .
There is a natural map LY /X → Lan

Y /X from the topos-theoretic cotangent complex to the
analytic one, which boils down to the counit M → M̂ of the (derived) p-completion adjunction
(and then inverting p).

Remark A.0.8. To compute this colimit, remember that the cotangent LB/A exists as an object of
Ch=0(B), and its terms are flat. Therefore, this can also be computed as a 1-categorical colimit in
Ch=0(B), with the transition maps being obtained by the functorial resolutions.

In particular, we deduce a functoriality with respect to maps of Huber rings, which allows us
to extend the definition to adic spaces as claimed. The statement for H0 also follows by analysing
K-flat resolutions.

6Here we are seeing LanB/A as a presheaf of objects in D=0, and not in the unbounded derived category.
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Remark A.0.9 ([13, Rmrk. 7.1.1, 7.1.2]). This definition can be simplified for the cases we’re
interested in. If A is an affinoid, bounded and tft over some p-adic field, then

colim
A+→B0

L̂B0/A+

[
1
p

]
∼−→Lan

A/B

where now only B0 varies; if B is furthermore bounded, then even L̂B+/A+[1/p] ∼−→Lan
A/B.

Similarly, one can also restrict only to tft rings of definition A0 → B0 on the colimit, when
A,B are tft over a p-adic field K . This is due to the fact that every every ring of definition is
contained in a larger tft ring of definition in this case. This recovers the definition in [21].

Proposition A.0.10. Let X ,Y be analytic adic spaces over S, with S itself living over SpaQp , and
consider an S-morphism X →Y . Then there is an analytic fiber sequence

L f ∗Lan
Y /S Lan

X /S Lan
X /Y

δ f

in D(X ), the derived category of OX -modules.

Proof. All operations in the definition preserve fiber sequences. For more details, the proof of [21,
Prop. 7.2.13] applies mutatis mutandis.

From now on, we assume for simplicity that we are working over B+
dR/ξ2 (defined in next

appendix). This allows us to get a proper handle on the subrings A0 and B0 in the definition of
the analytic cotangent complex.

Proposition A.0.11. Let X →Y be a finite map of adic spaces which are tft over B+
dR/ξ2. Then the

natural map

LY /X
∼−→Lan

Y /X

Is an equivalence. In particular, it follows from the properties of the usual cotangent complex that

τ51Lan
X /S

∼−→I /I 2[1]

is an isomorphism, and if the immersion is regular (meaning I is generated by a regular sequence)
then the result follows without truncation.

Proof. Follows by reducing to the affinoid case and applying [12, Prop. 5.2.15].

Proposition A.0.12. Let f : Y → X be a smooth map of adic spaces which are tft over B+
dR/ξ2. Then

the canonical map

Lan
Y /X

∼−→Ωan
Y /X

is an equivalence. In particular if Y /X is tft, then it is étale if and only if Lan
Y /X = 0.

Proof. This is [12, Cor. 5.2.14].
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The following definition is not strictly necessary, but it illuminates the definition of the lift in
section 3.2. We can define a deformation problem for adic spaces analogously to locally ringed
spaces [21, p. 7.3.13]. An analytic deformation of a morphism of adic spaces f : X → S by a coherent
OX -module F consists of a closed embedding of adic spaces j : X ,→Y together with the datum of
an OX -linear isomorphism j∗I

∼−→F , with I the ideal defining the embedding.
In [16, (1.4.1)] we see that in fact that any coherent ideal I ⊂ OY which squares to zero

determines an analytic extension OX ,→OY , as OY /I has a canonical topology, and the stalks have
canonical valuations, allowing us to define an adic space.

We denote by ExanS(X ,F ) the category of such deformations. A morphism of extensions is
a map of adic spaces Y →Y ′ over X which makes the diagram

0 F j∗OY ′ OX 0

0 F j∗OY OX 0

∼

commute. We note that ExanS(X ,F ) is a groupoid, and even a Picard groupoid via the usual
arguments with Baer sums.

B Sites associated to rigid-spaces

We recall that a perfectoid space is a certain type of adic space which is glued locally from perfectoid
Tate pairs. We denote byPerfd (resp. Perf) the full subcategory of adic spaces spanned by perfectoid
spaces (resp. perfetoid spaces of characteristic p). Perfectoid spaces admit a good theory of étale
morphisms and also pro-étale morphisms as recalled below.

Definition B.0.1. Let X = Spa(R,R+) and Y = Spa(S,S+) be affinoid perfectoids. A morphism
f : Y → X is said to be affinoid pro-étale if Y can be written as the limit Y = limYi → X where
Yi =Spa(Si,S+

i )→ X are étale affinoids. That is, for a pseudo-uniformizer $ of X we have that S
is isomorphic to the $-adic completion

S+ = (colimS+
i )∧$, S = S+

[
1
$

]
of the colimit with Spa(Si,S+

i )→ X étale.
A morphism of perfectoid spaces is said to be pro-étale if it is locally on source and target

affinoid proétale.

Remark B.0.2. In general, one might try and define pro-étale morphisms for general adic spaces
using the pro-category of X ét, as in [22], which works well for perfectoids and locally Noetherian
adic spaces, and leads to what is called the flattened pro-étale site of a rigid space. However, some
care with covers might be needed to define a pro-étale topology [23], and so we’ve opted to follows
the more modern approach of [24] using the related notion of a quasi-pro-étale morphisms (see
below).
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Pro-étale morphism have the expected permanence properties. They are closed under composi-
tion, base-change, and any morphism between pro-étale morphisms is pro-étale. However, they do
not satisfy pro-étale descent [25, Example 9.1.15].

Definition B.0.3. Let Perf be the category of characteristic p perfectoid spaces.
A collection of morphisms {Yi → X } of perfectoid spaces is a v-cover if for all quasi-compact

opens U of X there is a finite subset Yi1 , . . . ,Yin of the Yi and quasi-compact opens Vi ⊂Yi such
that

n⋃
d=0

f (Vid )=U .

The v-topology is the Grothendieck topology on Perf which is generated by v-covers.
A v-cover {Yi → X } is said to be a pro-étale cover if all maps Yi → X are pro-étale. The pro-étale

topology on Perf is the Grothenidieck topology generated by such covers.

Rigid-analytic spaces can be reincarnated as certain pro-étale sheaves as we will see below. But
first, we describe a local version of pro-étale maps which can be extended to sheaves on Perfproét.

Definition B.0.4 (Quasi-pro-étale maps). A perfectoid space X is said to be strictly totally discon-
nected, if it is qcqs and every étale cover of X splits. Equivalently [24, Prop. 7.16], every connected
component of X is of the form Spa(C,C+) for C an algebraically closed perfectoid field.

A morphism of pro-étale stacks f : Y → X is said to be quasi-pro-étale if it is locally separated
(meaning separated locally in the domain), and for all strictly totally disconnected X ′ and maps
X ′ → X the pullback YX ′ → X ′ is pro-étale.

By taking a careful limit over enough affinoid open covers of some space, we see that every
perfectoid space is pro-étale locally strictly totally disconnected [24, Lemma 7.18]. In particular
quasi-pro-étale morphisms are pro-étale locally pro-étale. We also see that morphisms which are
(quasi-)pro-étale locally quasi-pro-étale are quasi-pro-étale.

Definition B.0.5 ([24, Def. 11.1]). A diamond X is a pro-étale sheaf on the site Perf of characteristic
p perfectoid spaces, which is the quotient of a perfectoid Y by a pro-étale equivalence relation,
that is, a relation R ⊂Y ×Y such that the projection maps R ⇒Y are pro-étale.

Equivalently, a pro-étale sheaf X is a diamond if it admits a quasi-pro-étale surjection from a
perfectoid (cf. Prop. 11.5).

Therefore diamonds are analogous to algebraic spaces, however we do not ask for the repre-
sentability of the diagonal because this requirement is too strong in this setting. There is a good
notion of analytic topology associated to a diamond X , namely we define the topological space

|X | = |Y |/|R|,

where Y → X is a quotient by a pro-étale relation R =Y ×X Y .

Definition B.0.6. Let X be a locally spatial diamond, then we define the following sites in increasing
order of fineness.

38



� The analytic site Xan which is the site associated to the topological space |X |.
� The (finite) étale site X ét (Xfét), whose objects are (finite) étale morphisms Y → X and

v-covers.

� The quasi-pro-étale site Xqproét, whose objects are quasi-pro-étale morphisms Y → X and
same covers.

� The v-site Xv, whose objects are morphisms from a spatial diamond Y → X and same covers.

Remark B.0.7. Some care must be taken to circumvent set-theoretic issues for the qproét and v

sites. For this purpose, we fix a cutoff cardinal κ and take a colimit (loc. cit. Sec. 4). This procedure
is shown to preserve cohomology, and therefore we will not need to mention κ explicitly in any
of the following results.

Remark B.0.8. We mention the v-site mostly for completeness, as other references work with
v-bundles. However, in view of theorem 1.1.1, we can work with the quasi-pro-étale site instead.

We note that, by design, the quasi-pro-étale topos of a diamond is locally perfectoid. Indeed, any
diamond X is covered by a perfectoid, and hence we can pullback this cover to any Y ∈ Xqproét. In
particular, since perfectoids are locally weakly contractible [8, Def. 3.2.1], the quasi-pro-étale topos
of X is locally weakly contractible and hence replete by [8, Prop. 3.2.3]. This will be important
for us in the sequel.

There are natural canonical maps of ringed sites

Xv Xqproét X ét
λ ν

given by the inclusion functors. These functors will turn out to be an essential part of the
correspondence. We note that the pullback via λ and ν are fully faithful, and the cohomology of
étale sheaves agree on all three sites. [24, Props. 14.7, 14.8]

Definition B.0.9 ([24, Def. 15.5]). Let X be an analytic adic space over Zp. We define the diamond
associated to X to be the pro-étale sheaf

X ¦ : Perf→ Set S 7→
{
(S], ι), f : S]→ X

}
/∼=,

where S] is a perfectoid space, ι : (S])[ ∼−→ S is an isomorphism, and f is a morphism of adic spaces.
This data is considered up to isomorphism of such triples.

Theorem B.0.10 ([24, Lemma. 15.6]). Let X be an analytic adic space over SpaZp. We have
|X ¦| = |X |, and X ¦ is locally spatial (and therefore spatial if X is qcqs). Furthermore, X ¦ is a
diamond, and hence it is qproét and v locally perfectoid.

The associated diamond functor preserves étaleness, and induces an equivalence of (finite) étale
sites X ét

∼= X ¦
ét, Xfét

∼= X ¦
fét.
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We note that when proving that when proving that X ¦ there are two keys steps: the first is to
show that this is indeed a pro-étale sheaf, which reduces to showing that the functor

(SpaZp)¦ : S 7→
{
(S], ι) | ι(S])[ ∼−→ S

}
/∼=

parametrizing untilts of S is a pro-étale sheaf. The next step is to show that any analytic adic space
over SpaZp is the quotient of a perfectoid by a pro-étale equivalence relation. This information is
crucial to the proof of our main theorem.

We also note that the procedure X 7→ X ¦ does lose some information, as this functor is not
fully faithful. This procedure preserves information of a more “topological” nature (such as the
étale site).

Now if X is a rigid analytic variety, then we have a structure sheaf OX on X ét, which we can
pullback to a quasi-pro-étale/v-sheaf. We can then define the following completed version of the
structure sheaf on these sites.

Definition B.0.11 (The completed structure sheaf). Let X be an analytic adic space over a non-
archemidean field K . The completed structure sheaf, or the quasi-pro-étale structure sheaf, ÔX is
defined to be the sheaf

Ô+
X = lim

n
ν−1O+

X /pn; ÔX = Ô+
X

[
1
p

]
where the limit is taken as quasi-pro-étale sheaves. A similar definition also works within Xv.

The cohomology of ÔX captures interesting phenomena of the quasi-pro-étale topology of
rigid-analytic varieties. First, there is a acyclicity phenomena for affinoid perfectoid.

Theorem B.0.12 ([24, Prop. 8.5 (iii)]). Let X be a rigid-analytic space over K and Y =Spa(R,R+) ∈
Xqproét an affinoid perfectoid. Then OX (Y ) ∼−→ ÔX (Y ) and RΓ(Y , ÔX )=Γ(Y ,OX )= R.

In particular, if X is a rigid-analytic variety, which from now on we always see as a diamond, and
Y → X is an affinoid perfectoid quasi-pro-étale cover of X , then we can compute the cohomology
RΓ(X , ÔX ) as the Čech nerve of this cover.

On the other hand, if X is proper, then the cohomology of ÔX actually captures the étale
cohomology of X . First, note that We can consider C as a sheaf of rings on the qproét-site of X
by considering continuous maps into it; that is, we consider C as the sheaf

C : Xop

qproét
→Rings, Y 7→Hom(|Y |,C),

where the morphisms are taken in the category of topological spaces. When it is clear from
context, we will denote the sheaf C by simply C. We note that by repleteness of the quasi-pro-étale
topos, we have that OC =R limn OC/pn [8, Prop. 3.1.10], and hence RΓ(X ,C) computes the étale
cohomology of X with C-coefficients.

Theorem B.0.13 (The generic version of the primitive comparision theorem). Let X be a proper
rigid analytic variety over C. Then the natural map C → ÔX induces an equivalence of E∞-algebras

RΓ(X ,C) ∼−→ RΓ(X , ÔX ),
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where we are taking global sections in qproét site 7.

Proof. The primitive comparison theorem [18, Cor. 3.9.24], says that

RΓ(X ,OC/p) ∼−→
a

RΓ(X , Ô+
X /p)

is an almost quasi-isomorphism. The result now follows from a “almost derived Nakayama”
argument: from the exact sequences 0 → pnOC/pn+1 → OC/pn+1 → OC/pn+1 → 0 and 0 →
pnÔ+

X /pn+1 → Ô+
X /pn+1 → Ô+

X /pn → 0 we get by induction

RΓ(X ,OC/pn) ∼−→
a

RΓ(X , Ô+
X /pn),

so now the result follows by taking R lim, since RΓ commutes with it and by the fact that Xqproét

is replete we have OC =R limn OC/pn and Ô+
X =R limn Ô+

X /pn.

Remark B.0.14. This proof, as stated, follows from the development of a 6-functor formalism of
p-torsion sheaves on diamonds. The original statement is due to Scholze on [22, Thm. 1.3], using
the flattened pro-étale topology.
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